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1. 1In NMC Office Note 45, we presented an analySLS of the llnear
computational stability of an explicit and an implicit formulation of
the linear grav1tat10nal modes admitted by a.two-layer model atmosphere
. expressed in Phillips' o-coordinate. The 1mp11c1t method was un-
conditionally stable, whereas the exp11c1t method displayed only
conditional stability. There were two critical phase speeds 1nvolved
“in the explicit method's conditional stability criterion. For an
isothermal basic state, .the larger phase speed was close to that of
the'"Lamb wave." The second, slower mode, was referred to as the
"internal mode. The phase speed of the internal mode is commensurate
with the speed of advective winds found in the atmosphere, whereas the
"Lamb wave" phase speed is a good deal larger.

In practlce, the 1mp1101t method requires the solution of a
diagnostic boundary-value (eélliptic) equation for each mode of oscil-
lation which is treated implicitly. Thus, in the implicitly formu-
lated two-layer model, one finds it necessary to solve two such
boundary~value problems, -at each time step. . It is of some interest
- to examine the possibility of reducing the number of boundary value
" problems by’ utilizing, a modified form of the semi- implicit method.

It is the purpose-of this note, to present the results of an analysis

of the computational stability of such a modified scheme. 'The objective
of the modified formulation is to treat the "Lamb wave" implicitly and
the internal mode: eXpllc1tly The stablllty criterion, to'be determlned,
was expected to relate only to the speed of the internal mode.

2. The linearized differential'equations'are:
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In order to apply the modified sem1~1mp11c1t method, we first use
eq. (3) in eq. (4) to-get an alternative form of the thermodynamlc
equation: :

c T +To[pFu +p%é]+c 6T =0 6
p Lyt o lpru +p ‘?] , (6)

Secondly, we note that the boundary conditions on & at o =0
and o'='1 are & = 0. This fact is used to replace (3) by two
equations : ‘ ’ ’

. ]

¢+ p%x [T wide =0 ; 7y

R % - do. . (7
and

ey Sl - : : : v )

PP g TP¥ 05 =0 , | (8)
3. The modified semi—implicit:Schéme is formalized by indicating

the temporal discretization of .the differential equations :
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The basic idea formalized 1n4eqs (9 14) is the separatlon and
different treatment of the "external" and "internal® modes of gravi-
- tational oscillation.



4, We: shall now separate the»timé:and horizontal vafiation'from the
vertical variation by writing for each dependent variable,

= q(oyelkx gn | as
 ,On'thé"rightAhénd of (15), q 1is a function of o alone. Stability
- requires that the solutlons (15) exist with |z] = 1. Upon substi-

tutlon we :get .-
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‘By 1nfroduc1ng finite difference appfbilmatlons to model the vertical
variations, equatlons (16). through (21) are put into the follow1ng '
form. , : :
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The new variable, r, is defined to be ’
r=p/pF o o (27a)
and o i . __7 T , , o _
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The system of ten equations in ten unknowns forms a homogeneous,
linear set of simultaneous equatlons The existence of a non-trivial
solution is dependent upon the matrix of the coefficients hav1ng a
zZero valued determlnant :

Provided that ¢ # 0, one may reduce the set of equations; by
, ellmlnatlon of Tl’ T and Uy’ az, to ‘the follow1ng six equations :
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“We have introduced the param,etevrs
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Kk = Rfc. . .

’ ‘The sét of equations, | (28), (2.9)‘ and (30), ﬁay be put ‘into matrix form,
| Lv = 0 o @

L is the matbrix, |
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‘and v is the vector
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“The symbols used 1n (33) are deflned by
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N The frequency equation, obtained by requiring the dEtérminant of
L to vanish, has the form,

16<c2—1>(c2+1>2 {e”[chRT ~5RT )(cz) (;2+1)2
+ RT (RT,-KT D (D) 1) (12 + 4Rr<c——c§><c”>1~
+ e2[6(RT +RT )(cz—l) (224+1) (z2-z+1) |
+ 1z<c2+c2)(c2)<c2—1>2 - 4RF(c2)(; ~1)2]

+ 6[(c2-1)“]} =0 L ‘; e : (36)



It will be noted that the factors,. (£2-1) and (z2+1)2 are
irrelevant to our analysis. The equation (36) is simplified by
neglecting them. The expression, within the braces, is an eighth
degree polynomial in - with real—valued coefficients. The eight
roots will occur,in‘COnjugate:pairs. There are basically two modes
and, consequently, four physically relevant phase speeds. Our use
of centered differences to approx1mate the time derlvatlves glves
rise'to an additional set of four phase speeds — the so- -called compu-
tatlonal modes. 'Each of these phase speeds is assoc1ated with one of
the elght ‘roots of equatlon (36)

6. The evaluation of the roots of the frequeney equation (36) was
‘made for an isothermal atmosphere at a temperature of 250°K... The
value of "p* was set at 1000 mb.

As indicated in the 1ntroduct1on, it was anticipated that a con-~
dltlonal stablllty crlterlon Would exist of the form,

kit e, Z e ®

A

" 1 B ‘ : L ’,(3_7) ‘
iFrom previous analysis (NMC Office Note No. 5*), it was expected

that ¢y would have a value of approx1mately 82 m sec” When the
1sothermal basic state was employed

The parameter ' € in eq. (36) was allowed to have a set of values
denoted by an integer index, m ¢ :

-Zmm =5 (eml -
€ T 8L " 107> (em aec) o L (38)
For each value of € (m= 1,2, 4 6,8 lO), we evaluated the left—hand

side of the s1mp11f1ed form of eq. (36) over. the complex z-plane,
1nclud1ng all of the unit circle.

For each such evaluatlon, we roughly approx1mated the loci of the
- gzeroes, or roots, of the polynomial. It was anticipated that the roots
. would all 3ie on the unit c1rcle until the criterion (37) was

~ violated. 1If our estimate of ‘‘cy was correct, the:limiting value
‘should have occurred when. m =.8.,6.

The results of our calculation are shown 1n-figure 1. Only one
- half of the zeros are 1nd1cated the other half were the complex con- -
_Jugates of those shown

* The internal mode phase speed quoted is based upon z, = 2.95, a
correction of the value given in the reference. '



Thése results were not aﬁticipated The calculations have been
“carefully checked and appear to ‘be correct. s
» v o

The most significant point is the computatibnal'stability of the
calculation for m > 2. If the usual explicit stability criterion '
were to apply to the fastest mode, c; =¥ 310 sec,l;'the limiting
value of m Wouldnhave been 2. ; g

The first ampllfylng mode occurs When m > 4. Thus, the inte- -
‘gration method may be stated to admit a time step, At about two
times 1arger than that of an exp11c1t method -

The results suggest however, that the first dinstability 1s'
associated with the fastest mode (Lamb wave), in spite of our .-
attempt to treat it 1mp11c1tly

Another disturbing aspect of the results is the: strlklng lack
of symmetry about the imaginary axis. ‘A comparison of the numerical
phase angles with those expected from analytic calculation indicates
that the physical-internal mode is estimated quite well, as is the
computational-"Lamb" mode. * Both the physical-"Lamb" mode and the
- computational-internal mode are underestimated. The only explanation
which we can offer for this behavior is the "mixed character'.of the
approximations used in the two forms of the continuity equatlon and
in the thermodynamlc equatlon. A

Although our results_are ambiguous with respect to the merits of
the proposed modification of the implicit scheme; it is concluded
that further investigation of the method. appears warranted.
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